Numerical solution to the hermitian Yang-Mills equation on the Fermat quintic
نویسندگان
چکیده
منابع مشابه
numerical solution of the rosenau equation using quintic collocation b-spline method
in this paper , the quintic b-spline collocation scheme is employed to approximate numerical solution of the kdv-like rosenau equation . this scheme is based on the crank-nicolson formulation for time integration and quintic b-spline functions for space integration . the unconditional stability of the present method is proved using von- neumann approach . since we do not know the exact solution...
متن کاملOn the inverse Fermat equation
Lenstra Jr, H.W., On the inverse Fermat equation, Discrete Mathematics 106/107 (1992) 329-33 1. In this paper the equation x”” + y”” = z “n is solved in positive integers x, y, z, n. If the nth roots are taken to be positive real numbers, then all solutions are known to be trivial in a certain sense. A very short proof of this is provided. The argument extends to give a complete description of ...
متن کاملNUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE
This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولYang–mills Equation for Stable Higgs Sheaves
We establish a Kobayashi-Hitchin correspondence for the stable Higgs sheaves on a compact Kähler manifold. Using it, we also obtain a Kobayashi-Hitchin correspondence for the stable Higgs G–sheaves, where G is any complex reductive linear algebraic group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2007
ISSN: 1029-8479
DOI: 10.1088/1126-6708/2007/12/083